

Location of NASA Field Centers

NASA Missions and Program Priorities

- Aeronautics Design, Testing and ATM
- Human Space Exploration and Operation
- Space Technology
- Earth, Life, and Space Science Research
- Innovative Partnerships/Collaborations
- Spin-offs/Technology Transfer
- Spin-ins/Technology Infusion
- Education

NASA Partnering for Public Benefit and Innovation

Under the Space Act of 1958 that created NASA, the Agency is mandated to transfer the technologies that it develops in the conduits of it's aeronautics and space missions to the public sector to benefit life on Earth:

"The Congress hereby declares that it is the policy of the United States that activities in space should be devoted to peaceful purposes for the benefit of all mankind."

NASA Shall...

"Provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

This Provides for:

- Access to NASA Technologies
- Access to NASA's Unique Facilities
- Access to NASA's Unique Expertise

Applications and Public Benefits Technology

Applications of NASA-Derived Technology

- Health and Medicine
- Transportation
- Public Safety
- Consumer, Home & Recreation
- Environmental and Agricultural Resources
- Computer Technology
- Industrial Productivity

Public Benefits of NASA-Derived Technology

- Economic Growth
 - New Jobs
 - New Markets
 - Increased Efficiency
 - Improved Competitiveness
- Quality of Life
 - Improved Safety
 - New Products
 - Lives Saved or Extended
 - Green Technologies
 - Environmental Cleanup

Building Partnerships, Technology Transfer/Infusion

NASA

R&T Investments and Assets
Technology Expertise
Enterprise Objectives
Mission Needs

INDUSTRY

Capital
Technology Expertise
Equipment
Market Knowledge

Kechnology Partnerships

Shorter Technology Development Enhanced Technical Capabilities Higher Technology Readiness

Mature Technology

Adoption of New Technology Meet NASA Enterprise Goals New and Improved Products

Access New Markets
Improve Competitiveness

Technology Areas of Common Interest

Self-Driving Cars and UAVs

Diverse humanmachine interaction in a structured environment

GPS & map-based navigation

Distributed and cloud-based autonomy

Cyber-security for consumer product

Autonomy

Advanced Planning & Scheduling Algorithms, etc.

Human-Autonomy Teaming

Robotic Supervision including Human/Robotic Interactions, etc.

Networked Operations

Prognostics and Diagnostics

Including State Management, etc.

Sensor Technologies

Data Processing / Fusion Methodologies, etc.

Verification & Validation

Methodologies & Application Exeriences, etc.

NASA Missions

Planned humanmachine interaction in natural and time delayed environment Remote Vehicle Management, etc. Space & planetary nav

> Spacecraft autonomy

Cyber-security for "one-off" systems

Space environment

Limited ability to address/recover faults

NASA Partnership Vehicles

There are Many Ways to Partner with NASA

- Space Act Agreements
 - Non-Reimbursable
 - Reimbursable
 - Memorandum of Agreement/Understanding
 - Interagency
 - International
- Licensing Agreements
 - Exclusive
 - Nonexclusive
 - Limited Exclusive
- Software Agreements

Selected Key Partnerships

Planetary Skin Initiative and Rainforest Skin Layer

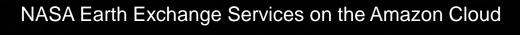
1. Quantum Computing 2. Planetary Content

3. Disaster Response

4. Autonomous Vehicles

Worldwide Telescope Project

Direct-To Software for Airplane Flights



Pipeline Rights-of-Way and Liquid & Gas Leak Detection

Model-Based Spaceflight Software Development


Skin Radiation and Lunar Dust Toxicity Studies

Selected Key Partnerships Continued...

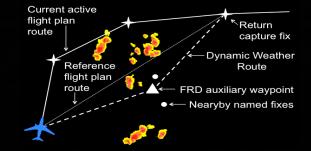


3. TPS Design and Analysis

4. High-End Computing

NISSAN

Robotics Technologies for Autonomous Vehicles



Wildfire Monitoring and Disaster Response

Robotic and Spacecraft Technology Research

Dynamic Weather Routes (DWR) Tool

Carbon Nanofiber Electrodes for Deep Brain Stimulation and Neural Prosthesis

Selected NASA Ames – Canada Partnerships

Aerosciences/Aerodynamics

Astrobiology/Life Science

Astrobiology/Rover Demonstrations Human Factors/Adaptive Systems

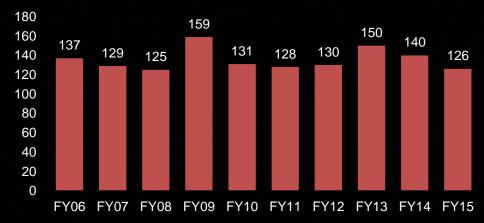
Nanosatellite Energy Storage

Robotics and Spacecraft Technology

Human Computer Interactions

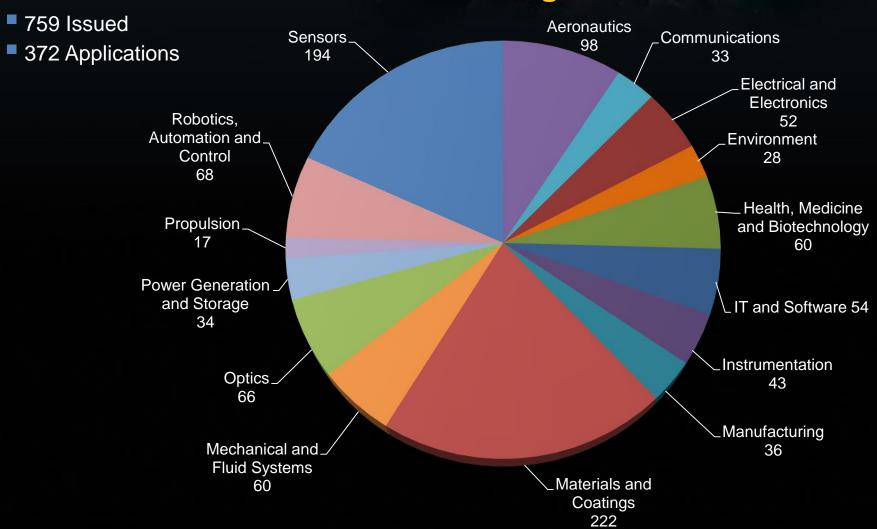
NASA's Technology Transfer Portal

Patent Strategy and Application Areas



Why does NASA Patent?

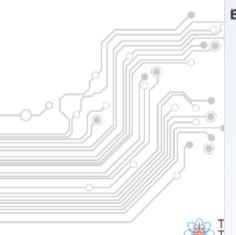
- Technology has Commercial Potential
- Will Actively and Aggressively Market
- Best Way to Transfer the Technology


US Patent Applications Filed

NASA Patent Portfolio Analysis

Total Patents Available for Licensing as of Jan. 2016

Software Catalog and Categories



National Agronautios and Space Administration

software

BRINGING NASA TECHNOLO

Browse by Category

business systems and project management

system testing

operations

design and integration tools

vehicle management

data servers processing and handling

propulsion

structures and mechanisms

crew and life support

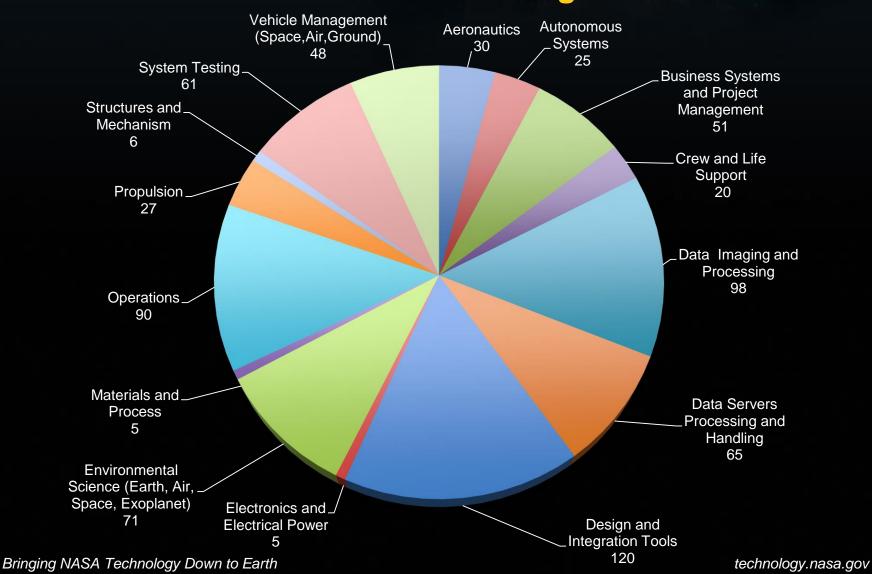
data and image processing

materials and processes

electronics and electrical power

environmental science

autonomous systems



aeronautics

NASA Software Catalog

Total Software Available for Licensing as of Feb. 2016

40 Years of NASA Spinoffs

Some of the best of over 2,000 recorded Spinoffs

CMOS camera-on-a-chip technology used in nearly all digital cameras, including smartphones

International search-and-rescue system has saved 40k lives worldwide since 1982

Ubiquitous aerodynamic innovations in airplanes and trucks

Voltage controller saves energy in nearly all load-bearing electrical machines

Precision GPS enabled self-driving tractors that are now used to work the majority of the world's farmland.

NASA Technologies Enabling a Sustainable Earth

Assistance to Developing Countries

- Clean Drinking Water
- Improved Agriculture
- Telemedicine and wireless networks
- Improved Environmental Decision Making

Environmental Cleanup

- Groundwater Remediation
- Land Mine Cleanup
- Landfill Cleanup
- Oil Spill Cleanup

Use of Green Technologies

- Aeronautics Technologies
- Green Buildings
- Encouraging Green Technologies
- Solar Power Applications
- Paint Stripping
- Global Research into Energy and the Environment at NASA (GREEN)

Disaster Warning and Relief

- Earthquake relief
- Tsunami Warning
- Wildfire Response
- Hurricane Warning

NASA-Derived Tech Contributing to Security

Improving Operational Systems

- Health & Performance Monitoring for Aviation Security
- Safe Composite Over-wrap Pressure Vessels
- Fire-Protective Fabrics & Smoke Masks
- Intumescent Materials
- Neutralizing Land Mines
- Secure Networks for First Responders and Military

Inspection Technologies

- Crack Detection in Nuclear Power Systems
- Hyperspectral Imaging for Food Safety
- Inspection of Suspicious Liquid/Solid Substances

Threat Detection

- Detection/Warning of Chem/Bio Attack
- Hyperspectral Imaging for Counter-Terrorism
- Anthrax Smoke Detectors
- Fiber Optic Chemical Agent Sensing

Identification & Investigation

- Pattern Recognition for Security Applications
- Video Enhancement Supporting Criminal Investigations

NASA-Derived Technologies Used in Homes

Bathrooms

- Infrared Ear Thermometer
- Ingestible Toothpaste
- Cosmetics
- Memory Metal Alloys
- Polished Brass Finish
- Bacteriostatic Water Softeners
- Reflective Insulation
- Environmentally Safe Sewage Treatment

Living Rooms

- Audio Equipment
- Insulated Paint
- Wireless Headset
- Carbon Monoxide Detection
- Environmental Cleansing
- Scratch Resistance and UV Blocking
- Portable X-Ray Device for Carpet Cleaning

Bedrooms/Sports

- Work Surface Light Bulbs
- Temper Foam
- Phase Change Materials
- Better Software
- Improved Footware
- Liquid Glass for Tennis Rackets
- Sport Helmets

Kitchens

- Water Purification
- Portable Cordless Vacuum Cleaners
- Freeze Dried Technology
- Advanced Solar Cells
- Space Garden
- Enriched Baby Food
- Refrigerator Internet Connected Wall

NASA-Derived Technologies Used in Cities

Aircraft and Airports

- Collision Avoidance Systems
- Clean Burning Engines
- Nitrogen Oxide Reduction
- Anti-Icing Systems
- Optics for High-speed Ticket Processing
- Pilot Stress Tests
- Cabin Pressure Devices
- Parachute Systems

Medical

- Light Emitting Diodes
- Automatic Insulin Pumps
- Artificial Limbs
- Diamond Coatings and Artificial Hip
- Corneal Refractive Therapy
- Precision Dialysis Pumps and Filters
- Ventricular Assist Device

Automotive

- Improved Radial Tires
- Cleaner Burning Cars
- Advanced Lubricants
- Crash and Structural Analyses
- Highway Safety
- Air Conditioning
- Refrigerant Enhancer
- Car Chassis & Brake Systems

Manufacturing

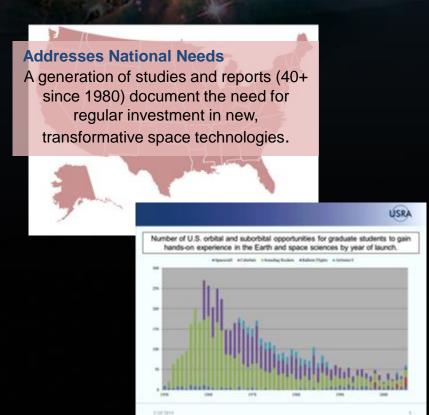
- Powdered Lubricants
- Improved Welding
- Power Plant Design and Monitoring
- Smokestack Monitors
- Chemical Detection
- Rapid Prototyping
- Improved Mine Safety
- Quick Fastners

Space Technology Pipeline

Approach for Maturing Promising Low-TRL Technologies

Space Technology – An Investment for the Future

Enables a **new class of NASA missions** beyond low Earth Orbit.


Delivers innovative solutions that dramatically improve technological capabilities for NASA and the Nation.

Develops technologies and capabilities that make NASA's missions more affordable and more reliable.

Invests in the economy by **creating markets and spurring innovation** for traditional and emerging aerospace business.

Engages the brightest minds from academia in solving NASA's tough technological challenges.

Value to NASA Value to the Nation

Guiding Principles of the Space Technology Investments

- Adhere to a Stake-holder Based Investment Strategy
- Invest in a Comprehensive Portfolio
- Advance Transformative and Crosscutting Technologies
- Develop Partnerships to Leverage Resources
- Select Using Merit-Based Competition
- Execute with Lean Structured Projects
- Infuse Rapidly or Terminate Promptly
- Place NASA at Technology's Forefront
- Create Pipeline of NASA and Public Inventors

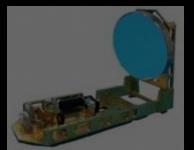
NASA's Game Changing Technology Focus Areas

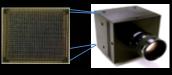


- High Data Rate Communications
- Space Instruments and Sensors
- Robotics and Autonomous Systems
- Space Radiation
- Launch and In-Space Propulsion
- Lightweight Space Structures
- Entry, Descent and Landing
- Energy Storage
- Environmental Control and Life Support

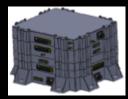

High Data Rate Communications

Optical Space Communication


Spacecraft Disturbance Isolation


Point-Ahead Mirror

Flight Laser Transceiver


Photon-Counting Camera

Electronics & Control

Laser Communication Relay

Demonstration

Laser Transmitter

nasa.gov/spacetech

Space Instruments and Sensors

NASA

Deep Space Atomic Clock

Robotics and Autonomous Systems

Self-Driving Cars at NASA Ames

- Aligned with NASA autonomy development priorities
- Enables NASA to gain valuable knowledge and lessons learned from extensive real-world testing
- Enables joint development and demonstration of high-impact vehicle applications
 - Mobility, transport, remote ops, and cyberphysical systems
- Facilitates spin-off of NASA technologies to the private sector
 - Robot navigation, perception, user interface
 - Dual-use in energy, environment, security, and other terrestrial domains.

Launch and In-Space Propulsion

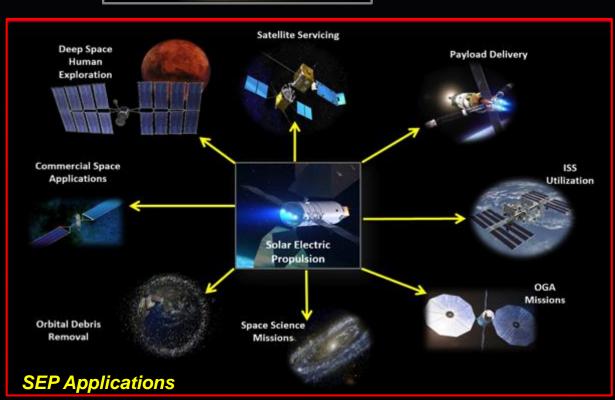
High Power Solar Electric Propulsion

Solar Arrays

SEP "Space Tugboat"

Power Processing Units (PPUs)

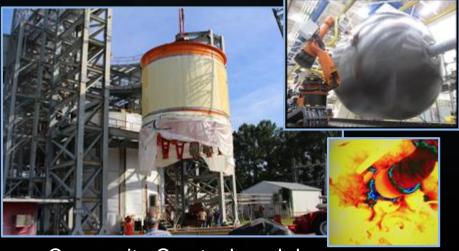
Thrusters



Propellant Feed System & Storage Tanks

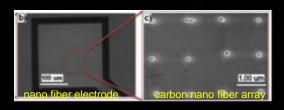
Down to Earth

nasa.gov/spacetech

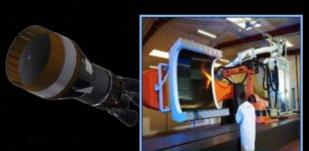

Lightweight Space Structures

Advance Launch Systems

Additive Manufacturing for combustion chambers and nozzles



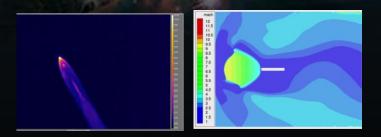
Composite Cryotank and dry structures



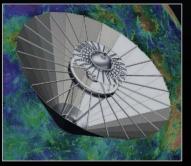
eCryo for upper stage

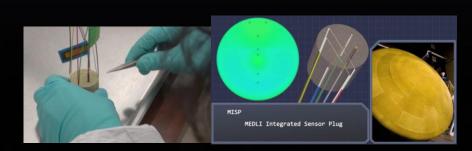
Nanotechnology

Composites for upper stage

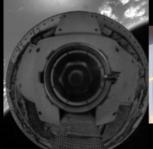

nasa.gov/spacetech

Entry, Descent, and Landing




Supersonic Retro Propulsion

Computer Modeling and Data



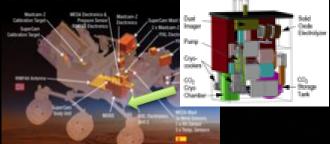
Inflatable (THOR) or Mechanically Deployable (ADEPT) Entry Systems

Low Density Supersonic Decelerator

3-D, multi-layer preform weaving technology for thermal protection nasa.gov/spacetech

Bringing NASA Technology Down to Earth

Environmental Control and Life Support



Alternate Water Processor

Variable Oxygen Regulator 3.0

Mars Oxygen ISRU
Experiment (MOXIE)

Life Support aboard ISS

Advanced Oxygen Recovery

Portable Life Support System Integrated Test

nasa.gov/spacetech

Finding Technologies

There are many searchable databases available to help identify technologies of interest. Some of these are summarized below:

NASA Technology Transfer Portal:

NASA Game Changing Technology: http://nasa.gov/spacetech

NASA Software Catalog:

NASA Tech-Briefs:

NASA Spinoff:

http://technology.nasa.gov/

http://software.nasa.gov/

http://www.techbriefs.com/

http://spinoff.nasa.gov/

Partnerships Points of Contact at NASA Ames

Licensing: Trupti Sanghani

trupti.d.sanghani@nasa.gov (650) 604-6889

Software: Martha Del Alto

martha.e.delalto@nasa.gov (650) 604-4865

International: Terry Pagaduan

terence.pagaduan@nasa.gov (650) 604-1181

Technology Transfer: David R. Morse

david.r.morse@nasa.gov (650) 604-4724

Space Technology Drive Exploration

